Waltzing route toward double-helix formation in cholesteric shells.
نویسندگان
چکیده
Liquid crystals, when confined to a spherical shell, offer fascinating possibilities for producing artificial mesoscopic atoms, which could then self-assemble into materials structured at a nanoscale, such as photonic crystals or metamaterials. The spherical curvature of the shell imposes topological constraints in the molecular ordering of the liquid crystal, resulting in the formation of defects. Controlling the number of defects, that is, the shell valency, and their positions, is a key success factor for the realization of those materials. Liquid crystals with helical cholesteric order offer a promising, yet unexplored way of controlling the shell defect configuration. In this paper, we study cholesteric shells with monovalent and bivalent defect configurations. By bringing together experiments and numerical simulations, we show that the defects appearing in these two configurations have a complex inner structure, as recently reported for simulated droplets. Bivalent shells possess two highly structured defects, which are composed of a number of smaller defect rings that pile up through the shell. Monovalent shells have a single radial defect, which is composed of two nonsingular defect lines that wind around each other in a double-helix structure. The stability of the bivalent configuration against the monovalent one is controlled by c = h/p, where h is the shell thickness and p the cholesteric helical pitch. By playing with the shell geometry, we can trigger the transition between the two configurations. This transition involves a fascinating waltz dynamics, where the two defects come closer while turning around each other.
منابع مشابه
Microfluidic fabrication of cholesteric liquid crystal core-shell structures toward magnetically transportable microlasers.
We report a magnetically transportable microlaser with cholesteric liquid crystal (CLC) core-shell structure, operating in band-edge mode. The dye doped CLC shells as a water-in-oil-in-water (W/O/W) double emulsion were fabricated by microfluidics. Water-dispersible Fe3O4 magnetic nanoparticles were incorporated in the inner aqueous phase by taking advantage of the immiscibility with the middle...
متن کاملUniform Lying Helix of Cholesteric Liquid Crystals Aligned by means of Slit Coater Method with Electric Treatment
A Uniform Lying Helix (ULH) liquid crystal device (LCD) fabricated by utilizing the characteristics of shear flow alignment as well as dielectric anisotropy was demonstrated. Cholesteric liquid crystals with a short helical pitch can exhibit an electric field-induced tilt. These experimental results indicate that it is possible to realize a high-speed response flexible LCD using plastic substra...
متن کاملHigh-fidelity spherical cholesteric liquid crystal Bragg reflectors generating unclonable patterns for secure authentication
Monodisperse cholesteric liquid crystal microspheres exhibit spherically symmetric Bragg reflection, generating, via photonic cross communication, dynamically tuneable multi-coloured patterns. These patterns, uniquely defined by the particular sphere arrangement, could render cholesteric microspheres very useful in countless security applications, as tags to identify and authenticate their carr...
متن کاملExperimental Investigation of Laser Emission of Dye-Doped Cholesteric Liquid Crystals with a Cholesteric Reflector
Dye-doped cholesteric liquid crystal (CLC) behaves like a one-dimensional photonic crystal laser when pumped by a second harmonic Nd-YAG pulsed laser. Usually circularly polarized laser light in the same sense as the cholesteric helix is emitted from both directions of the lasing cell. In this paper, we experimentally demonstrate the laser emission enhancement and investigate the corresponding ...
متن کاملMagnetic Nanoparticle-Assisted Tunable Optical Patterns from Spherical Cholesteric Liquid Crystal Bragg Reflectors
Cholesteric liquid crystals (CLCs) exhibit selective Bragg reflections of circularly polarized (CP) light owing to their spontaneous self-assembly abilities into periodic helical structures. Photonic cross-communication patterns could be generated toward potential security applications by spherical cholesteric liquid crystal (CLC) structures. To endow these optical patterns with tunability, we ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 113 34 شماره
صفحات -
تاریخ انتشار 2016